Direct Collocation with Reproducing Kernel Approximation for Two-Phase Coupling System in a Porous Enclosure

نویسندگان

چکیده

The direct strong-form collocation method with reproducing kernel approximation is introduced to efficiently and effectively solve the natural convection problem within a parallelogrammic enclosure. As behavior in fluid-saturated porous media involves phase coupling, resulting system highly nonlinear nature. To this end, local adopted conjunction Newton–Raphson method. Nevertheless, unveil performance of analysis, only single thermal major concern herein. A unit square designated as model investigate parameters related convergence; several benchmark problems are used verify accuracy approximation, which stability demonstrated by considering various initial conditions, disturbance discretization, inclination, aspect ratio, support size. It shown that larger size can be flexible approximating irregular discretized problems. derivation explicit operators two-phase variables solving using carried out detail.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

synthesis of platinum nanostructures in two phase system

چکیده پلاتین، فلزی نجیب، پایدار و گران قیمت با خاصیت کاتالیزوری زیاد است که کاربرد های صنعتی فراوانی دارد. کمپلکس های پلاتین(ii) به عنوان دارو های ضد سرطان شناخته شدند و در شیمی درمانی بیماران سرطانی کاربرد دارند. خاصیت کاتالیزوری و عملکرد گزینشی پلاتین مستقیماً به اندازه و- شکل ماده ی پلاتینی بستگی دارد. بعضی از نانو ذرات فلزی در سطح مشترک مایع- مایع سنتز شده اند، اما نانو ساختار های پلاتین ب...

A Meshless Collocation Method Based on the Differential Reproducing Kernel Approximation

A differential reproducing kernel (DRK) approximation-based collocation method is developed for solving ordinary and partial differential equations governing the oneand two-dimensional problems of elastic bodies, respectively. In the conventional reproducing kernel (RK) approximation, the shape functions for the derivatives of RK approximants are determined by directly differentiating the RK ap...

متن کامل

A New Approach for Constructing Pore Network Model of Two Phase Flow in Porous Media

Development of pore network models for real porous media requires a detailed understanding of physical processes occurring on the microscopic scale and a complete description of porous media morphology. In this study, the microstructure of porous media has been represented by three dimensional networks of interconnected pores and throats which are designed by an object oriented approach. Af...

متن کامل

Error estimation for nonlinear pseudoparabolic equations with nonlocal boundary conditions in reproducing kernel space

In this paper we discuss about nonlinear pseudoparabolic equations with nonlocal boundary conditions and their results. An effective error estimation for this method altough has not yet been discussed. The aim of this paper is to fill this gap.

متن کامل

Iterative Solution to Approximation in Reproducing Kernel Hilbert Spaces

A general framework for function approximation from finite data is presented based on reproducing kernel Hilbert spaces. Key results are summarised and the normal and regularised solutions are described. A potential limitation to these solutions for large data sets is the computational burden. An iterative approach to the least-squares normal solution is proposed to overcome this. Detailed proo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9080897